数学必修教学计划

时间:2024-05-22 19:18:16
数学必修教学计划

数学必修教学计划

人生天地之间,若白驹过隙,忽然而已,成绩已属于过去,新一轮的工作即将来临,此时此刻我们需要开始制定一个计划。相信大家又在为写计划犯愁了?以下是小编为大家整理的数学必修教学计划,仅供参考,大家一起来看看吧。

数学必修教学计划1

一、指导思想:

在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。

二、教材简析

使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。

三、教学任务

本学期上半期授课内容为《选修1-2》和《选修4-4》,中段考后进入第一轮复习。

四.学生基本情况及教学目标

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。

五、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

六、教学措施:

1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进

度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。

七、教师任务分工安排表

周末试卷出卷以及备课组集体备课主讲人时间安排表

八、教学进度表:

20xx—20xx学年度第二学期高二数学(文)进度表

九、其他说明

1、单元测试试卷按照周末卷出题顺序出题,期中、期末考试试卷另行安排

2、如有特殊情况根据实际情况安排

数学必修教学计划2

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

三、教学内容

第一章集合与函数概念

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

第二章基本初等函数(I)

1.通过具 ……此处隐藏6533个字……面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

数学必修教学计划8

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。xx5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

数学必修教学计划9

一、教学目标:

1、知识与技能

⑴ 理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;

⑵ 基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序.

2、过程与方法

在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤.

3、情感与价值观

⑴ 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献.

⑵ 在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力.

二、教学重点、难点:

重点:理解辗转相除法与更相减损术求最大公约数的方法.

难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.

三、教学过程:

(一)创设情景、导入课题

1.研究一个实际问题的算法,主要从哪几方面展开?

算法步骤、程序框图和编写程序三方面展开.

2.在程序框图中算法的基本逻辑结构有哪几种?

顺序结构、条件结构、循环结构

3.在程序设计中基本的算法语句有哪几种?

输入语句、输出语句、赋值语句、条件语句、循环语句

4.思考1:18与30的最大公约数是多少?你是怎样得到的?

5. 思考2:对于8251与6105这两个数,它们的最大公约数是多少?你是怎样得到的?

由于它们公有的质因数较大,利用上述方法求最大公约数就比较困难.有没有其它的方法可以较简单的找出它们的最大公约数呢?

(板书课题)

(二)师生互动、探究新知

1. 辗转相除法

思考3:注意到8251=6105×1+2146,那么8251与6105这两个数的公约数和6105与2146的公约数有什么关系?

我们发现6105=2146×2+1813,同理,6105与2146的公约数和2146与1813的公约数相等.

思考4:重复上述操作,你能得到8251与6105这两个数的最大公约数吗?

6105=2146×2+1813

2146=1813×1+333

1813=333×5+148

333=148×2+37

148=37×4+0

以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.

利用辗转相除法求最大公约数的步骤如下:

第一步:用较大的数m除以较小的数n得到一个商 和一个余数 ;

第二步:若 =0,则n为m,n的最大公约数;若 ≠0,则用除数n除以余数 得到一个商 和一个余数 ;

第三步:若 =0,则 为m,n的最大公约数;若 ≠0,则用除数 除以余数 得到一个商 和一个余数 ;

……

依次计算直至 =0,此时所得到的 即为所求的最大公约数.

思考5:你能把辗转相除法编成一个计算机程序吗?

第一步,给定两个正整数m,n(m>n).

第二步,计算m除以n所得的余数r.

第三步,m=n,n=r.

第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.

INPUT m,n

DO

r=m MOD n

m=n

n=r

LOOP UNTIL r=0

PRINT m

END

《数学必修教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式