等腰三角形的性质说课稿
等腰三角形的性质说课稿
作为一名优秀的教育工作者,就难以避免地要准备说课稿,说课稿有助于学生理解并掌握系统的知识。怎样写说课稿才更能起到其作用呢?下面是小编收集整理的等腰三角形的性质说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
等腰三角形的性质说课稿1一、教材分析
本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直平分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二、教学目的
(一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。
(二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。
(三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。
三、教学重、难点
(一)重点:等腰三角形的性质的探究及应用
(二)难点:等腰三角形“三线合一”性质的运用
四、教学方法
(一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
(二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
五、教学过程
(一)创设情景,引入新知
我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形——等腰三角形。
等腰三角形的有关概念,轴对称图形的有关概念。
提问:等腰三角形是不是轴对称图形?什么是它的对称轴?
(二)实验探索,大胆猜想
教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。
(三)证明猜想,形成定理
让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。
1、性质定理1:
等腰三角形的两个底角相等
在△ABC中,∵AB=AC()∴∠B=∠C()
2、性质定理2:
等腰三角形的顶角平分线、底边上的中线和高线互相重合
(1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()
(2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()
(3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()
(四)应用举例,强化训练
指导学生表述证明过程。
思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?
(五)归纳小结,布置作业
1、归纳:
(1)等腰三角形的性质定理。
(2)等边三角形的性质
(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。
(4)联想方法要经常运用,对解题大有裨益。
2、作业布置:
(1)必做题:
书本课后作业
(2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?
等腰三角形的性质说课稿2一、教材分析
1、教材的地位和作用
《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。
2、教材的教学目标:
①知识与技能目标:
掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。
②过程与方法目标:
通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:
通过合作交流培养学生团结协作、乐于助人的品质。
3、教学重点与难点:
重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。
二、学情分析
八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。
三、教法与手段
根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。
四、学法设计
《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。
五、教学过程设计
(一)创设情景、导入新课
①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。
(设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)
②等腰三角形的相关概念:
1定义:两条边相等的三角形叫做等腰三角形。
边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。
角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
③设问:等腰三角形具有哪些特殊的 ……此处隐藏16795个字……
性质定理1
性质定理2
学生板演
等腰三角形的性质说课稿9一、教材分析
1.教材的地位与作用:
等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。
2.教学目标:
知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。
能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
3.教学重点与难点
重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。
难点:等腰三角形三线合一的推理应用
二、教法与学法
教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。
三、教学过程:
(一)出示教学目标
知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。
能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。
(二)直观演示,大胆猜想
观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。
由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。
(二)证明猜想,形成定理。
1△ABC中,AB=AC,求证:∠B=∠C
思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕
2有其它的方法吗?试试看,用不同的方法证明这个结论。
让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。
2交流反馈,共同完成本节重要知识点的证明。
通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水平。
3小结:根据等腰三角形的性质填空。
(1)如果AB=ACAD是角的平分线那么......
(2)如果AB=ACAD⊥BC那么......
(3)如果AB=ACBD=CD那么......
总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。
(三)应用举例,强化训练
为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。
通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。
四、归纳小结
为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。
等腰三角形的性质教学反思
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。
性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角平分线平分底边、垂直于底边,2等腰三角形的底边上的中线平分顶角、垂直于底边,3等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2等腰三角形的顶角平分线垂直于底边,3等腰三角形的底边上的中线平分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。
性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学习习惯。
本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。
文档为doc格式